
-- SheetCAM postprocessor for bLouChip MillRight MegaV XL CNC Plasma machine.

-- This postscript was copied and modified from SheetCAM's GRBL plasma.scpost V7.0.19 std file.

-- Used and tested with GRBL v1.1i XYZA axis machine.

-- ===

-- LDC vars

LdcVersion = "20.3-beta"

--[[SheetCAMs Rotary-plasma plugin support has been added, but it is NOT required.

If you don't use the Rotary-plasma plugin, that is it is not an "Enabled" plugin, then

you should comment out the Rotary Plasma and Helper library stmts at the end of this scpost, as such:

 --package.path = sc.Globals:Get().thisDir .. "/plugins/RotaryPlasma/?.lua"

 --require("rotaryhelper")

If you do use the Rotary-plasma plugin, then those stmts are required.

Know that you can have the Rotary-plasma plugin "Enabled" all the time and just

select "Flat Sheet" in the plugin dialogue to run a 2D job, ie rotary is not used.

I have tested this scpost with Rotary-plasma plugin for Flat Sheet, Round Pipe,

and Rectangle Tubing thus far, but pretty minimal testing, so be careful with use.

I have also tested it without the plugin enabled.

Please report problems in https://forum.sheetcam.com/ or send me a PM.

*** IMPORTANT ROTARY NOTE:

*** ZERO Z TO THE SURFACE OF THE CYLINDER PRIOR TO JOB START, NOT THE CENTER OF ROTATION.

*** For Rectangles, zero Z on the apex of a corner rotated to top dead center. In other words,

*** that is the maximum radius for the object.

Global vars defined here only get initialized at scpost load time.

By contrast, those vars in OnInit() function down below get intitalized at evey post process runtime.

]]

--[[Air Supply Time, in minutes, is handy if your air compressor is under-sized for

for the plasma torch air flow demands during continuous runtimes. Set this to the maximum

continuous demand time on the air supply before the tank pressure falls to low to supply

the correct PSI to the torch. When this timer hits, the plasma job will Pause allowing

the operator to Resume the job via controller sw Cycle Start button or a physical Resume button

on the table control panel. The job will also Pause between SC Part cutouts, allowing the operator

to reach into the table to remove a cut part if so desired.

]]

LdcAirSupplyTime = 5.0 -- default minutes, air supply time to maintain continuous cutting.

--[[The feedrate and shape cut lengths are calculated as a time and a timer in this scpost

accummulates those values to plant the grbl Pause stmt. In order to get somewhat accurate

timings, set the Torch Touchoff Time in minutes (seconds/60) to the time it takes your machine

to run through a pre-cut torch zeroing touchoff cycle.

]]

LdcTorchTouchoffTime = 8/60 -- minutes, seconds/60 if that is easier

LdcGrblPauseStmt = "M0" -- use the Job Pause stmt for your controller

LdcThcONcmd = "M7 (enable Z THC and anti-dive circuit)"

LdcThcOFFcmd = "M9 (disable Z THC and anti-dive circuit)"

--rotary.on

-- these global vars are copied from "Mach3 Rotary.scpost"

-- my understanding is that these vars are global to Rotary-plasma plugin and helper (p/h) macros.

rotaryAxis = " A" -- usually A, include leading blank for readbility in the gcode file

unitsPerRev = 360 --Number of units(usually degrees) for one full revolution of the rotary axis

--rotary.off

--[[The following variables can be defined external to this .scpost in SheetCAM Variables

Either in Operations using Set Variables op or via the program menu bar

options/window tabs of Options->JobOptions->Variables or Options->ApplicationOptions->Variables.

The defaults for these variables if not defined in the above Options can be seen above and in the

function OnInit() below. All values in this .scpost code are in mm, but this post works fine in

either mm or inches as defined in the gcode Output File Units of Metric or Inches in

Options->Machine->Post Processor.

============ External variables are described as:

]]

-- the gravity slide travel distance of the torch holder from top of material to actuating the probe switch

-- This is also referred to as the float distance on a floating torch mount.

post.DefineVariable("LdcTorchProbeTravel", sc.unitLINEAR, 1.0, 10.0)

-- causes arcs to be coded with short line segments chained together, replaces G2/G3 motion with G1 motion.

-- typically used if G2/G3 motion causes grbl error 33 or the like. The value specifies the line segment length.

post.DefineVariable("LdcArcAsMoves", sc.unitLINEAR, 0, 0.200)

--[[THC present on machine or not.

On my CNC plasma table, this option ON(1) produces M4, S1000 (100% Spindle power),

M7, and M9 grbl stmts. When this option is OFF(0), the post produces M3 S1000 and M5 stmts.

Note that M7 grbl stmt is typically availabe by default only on 4 axis controllers

such as Atmega2560 or Teensy4.1 since they have extra I/O pins.

The 3 axis controllers such as Arduino Uno should use M8 if avaiable.

My machine uses the M4, Snnnn, M7, and M9 in conjunction with grbl config $32=1 (laser mode)

and a custom THC Z Anti-Dive circuit. The anti-dive circuit

prevents the THC from diving the torch into the work material during

G1 XY cornering and start/stop of cuts, basically anytime the feedrate due to acceleration/deceleration

falls below 85% of programmed value. Grbl manages this automatically when in Laser Mode and firing with M4.

My custom THC Z Anti-Dive circuit schematic is here:

 https://drive.google.com/file/d/1UKgOIl-9XRypoTO2jaWg7nsvEHAYx1RG/view?usp=sharing

The custom anti-dive circuit works in conjunction with a Proma Compact THC SD unit.

]]

post.DefineVariable("LdcThcPresent", sc.unit0DECPLACE, 0, 1)

--[[THC enable ON(1) or OFF(1). This option is secondary to LdcThcPresent, thus LdcThcPresent must be YES(1).

This option allows for dynamic control of the THC if your controller supports that function.

Thus, if you'd like to turn off the THC for an Operation, use the SC Set Post Processor Variable operation

to change the value of this option.

My machine's THC enable is managed by the grbl Spindle Speed (S), when S850 or lower is in effect, the THC

is effectively OFF, greater than S850 is ON. The THC enable is also dynamically managed via the Spindle PWM

signal during runtime via the custom THC Z Anti-Dive circuit referenced above, provided S1000 stmt has been

issued and is in effect.

]]

post.DefineVariable("LdcThcEnable", sc.unit0DECPLACE, 0, 1)

-- similar to Path Rules 'On small shape' action, but allows for further customization of actions

-- The value used is the length of the small shape cut including leadin and leadouts.

post.DefineVariable("LdcSmallShape", sc.unitLINEAR, 0, 100)

-- a switch which allows testing gcode on a grbl controller not connected to a physical CNC machine

post.DefineVariable("LdcBenchTest", sc.unit0DECPLACE, 0, 1)

post.SetOptions(post.ARC_SEGMENTS) -- limit arc moves to 180 deg -- LDC

post.ForceExtension("nc")

function OnAbout(event)

 ctrl = event:GetTextCtrl()

 ctrl:AppendText("GRBL Plasma XYZA post processor, **LDC Customized\n")

 ctrl:AppendText(" Requires Rotary-Plasma plugin for Rnd Pipe and Rectangle tubing.\n")

 ctrl:AppendText(" But for Flatsheet 2D cutting, this post works WITH or WITHOUT the plugin.\n")

 ctrl:AppendText(" Works with or without a THC.\n")

 ctrl:AppendText(" Annotated and easily adaptable to your specific machine.\n")

 ctrl:AppendText("Rotary Z0 at max OD (surface), NOT rotary center line; thus works with short Z motion.\n")

 ctrl:AppendText("M4 or M3/M5 turn the torch on/off\n")

 ctrl:AppendText("Arc as Moves (G1) or Incremental IJ (G2/G3)\n")

 ctrl:AppendText(" ** external post variables\n")

 ctrl:AppendText("LdcTorchProbeTravel -- default mm, same as floating torch mount float distance\n")

 ctrl:AppendText("LdcThcPresent -- default, THC present on machine = 1, not present = 0\n")

 ctrl:AppendText("LdcThcEnable -- default, THC enable ON = 1, OFF = 0, can be used for dynamic THC control at runtime\n")

 ctrl:AppendText("LdcArcAsMoves -- default mm, use 0 for G2/G3 arcs, else specify the line segment length for G1 motion\n")

 ctrl:AppendText("LdcSmallShape -- default mm, use 0 for no small shapes; not needed w THC Z Anti-Dive\n")

 ctrl:AppendText("LdcBenchTest -- default OFF = 0; used for testing on grbl without a machine\n")

end

function OnInit()

 post.SetCommentChars ("()", "[]") --make sure (and) characters do not appear in system text

 -- LDC job init block

 -- external post variables default values

 LdcTorchProbeTravel = 8.2

 LdcThcPresent = 1

 LdcThcEnable = 1

 LdcArcAsMoves = 0

 LdcSmallShape = 0

 LdcBenchTest = 0

 -- internal processing vars

 LdcShapeNum = 1

 LdcThcOn = false

 LdcSmallShapeCount = 0

 LdcCuttingTime = 0 -- the per cut time accumulater, the timer

 LdcOpFeedrate = 0

 LdcLastPartIndex = 0

 LdcAbsCutHeight = 1e+30

 LdcMaxRotRad = 0 -- maximum rotary radius, can be approx. 1/2 diagonal of rectangles and I-beams

 LdcIsRotaryPlugin = false

 LdcIsRotaryJob = false

 LdcRotZ0Surface = true

 LdcDidPenUp = false

 LdcProbeCmd = "G38.2 Z" -- set default, report probe error if limit sw not made

 LdcFirstSafeZ = true

--rotary.on

 -- endA is a global var instantiated in the Rotary-plasma p/h, thus if it exits, the plugin is enabled.

 if endA ~= nil then

 LdcIsRotaryPlugin = true

 -- BeamType 0 = flatsheet, 1 = Rectangle, 2 = Round Pipe, 3 = I-Beam, 4 = Custom

 if var.BeamType > 0 then LdcIsRotaryJob = true end

 end

--rotary.off

 -- build a gcode file comment header section...

 post.Text("; Post: '", postName, "' V", LdcVersion, "\n")

 post.Text("; GCode file: '", fileName, "'\n")

 post.Text("; GCode datestamp: ", date, "- ", time, "\n")

 -- init gcode initial state and retract motion...

 post.Text("G00 G17 G40 G54 G90 M5 M9 F0\n")

 FRformat = "0.##" -- feedrate format

 if scale == metric then

 post.Text ("G21 (metric mode)\n")

 format = "0.000" -- alt format "0.0##"; accuracy to 3 decimals mm necessary to avoid grbl error33 on arcs

 else

 post.Text ("G20 (inch mode)\n")

 format = "0.0000" -- alt format "0.0###"; accuracy to 4 decimals in inch mode

 end

 -- begin gcode block comment header...

 post.Text("; *** ATTENTION OPERATOR ***\n")

 post.Text("; Be sure to Zero Z (torch tip) to top of material\n")

 if LdcIsRotaryJob then

--rotary.on

 -- get the cylinder radius or maximum radius of the rectangle, which is the apex

 -- of the corner including radius of corner. This position in the drawing should always be materialY1.

-- normally qryCHKEND() function does not need to be called in a scpost. I’m doing it here because I need the

-- maximum radius due to using/assuming Z0 as the surface of the rotary object, LdcMaxRotRad is the maximum rotary radius

-- used throughout my scpost as a correcting Z offset to endZ (set by SC with an assumed Z0 of center of rotation).

-- Very important: qryCHKEND() always takes the Y axis argument which is the Y position on the flat drawing, NOT the Y position

-- on the wrapped rotary object; it returns the radius to the object surface at that Y flat drawing position.

 LdcMaxRotRad = sc.QueryDll(qryCHKEND, materialY1, dllId)

--rotary.off

--rotary.ON optional

 post.Text("; Rotary Job -- ")

 if var.BeamType == 1 then

 post.Text("RECTANGLE TUBING ... Ready for machine testing\n")

 post.Text("; Beam Height: ", post.FormatNumber(var.BeamHeight * scale, format),

 ", Beam Width: ", post.FormatNumber(var.BeamWidth * scale, format),

 ", Corner Radius: ", post.FormatNumber(var.CornerRadius * scale, format), "\n")

 post.Text("; Wall Thickness: ", post.FormatNumber(var.WallThickness * scale, format),

 ", Map Drawing To Inside: ", var.MapDrawingToInside, "\n")

 post.Text("; WCS Zero setup: Y0.00 A0.00 is the centerline of Rectangle Width\n")

 post.Text("; X0.00 is left edge of tubing\n")

 post.Text("; *** ZERO Z ON APEX OF TUBING CORNER ***\n")

 --var.LdcThcPresent =

 --var.LdcThcEnable =

 post.Text("; *** OPERATOR: Be aware that this job contains Z motion during cutting.\n")

 post.Text("; *** Adjust your THC use accordingly. \n")

 end

 if var.BeamType == 2 then

 post.Text("ROUND PIPE ... Ready for machine testing\n")

 post.Text("; *** ZERO Z ON SURFACE OF CYLINDER ***\n")

 post.Text("; Pipe Diameter: ", post.FormatNumber(var.PipeDiameter * scale, format),

 ", Wall Thickness: ", post.FormatNumber(var.WallThickness * scale, format), "\n")

 post.Text("; Map Drawing To Inside: ", var.MapDrawingToInside, "\n")

 end

 if var.BeamType == 3 then

 post.Text("I-BEAM ... WARNING- NOT TESTED\n")

 post.Text("; Beam Height: ", post.FormatNumber(var.BeamHeight * scale, format),

 ", Beam Width: ", post.FormatNumber(var.BeamWidth * scale, format),

 ", Web Thickness: ", post.FormatNumber(var.WebThickness * scale, format), "\n")

 post.Text("; Flange Thickness: ", post.FormatNumber(var.FlangeThickness * scale, format),

 ", Map Drawing To Inside: ", var.MapDrawingToInside, "\n")

 end

 if var.BeamType > 3 then

 post.Text("Custom setup, values unknown. WARNING- NOT TESTED\n")

 end

 post.Eol()

 end

--rotary.OFF

 post.Text("G28 G91 Z0 (retract Z for start of job)\n")

 post.Text("G90\n")

 -- alternate Z retract commands for start of job...

 --post.NonModalNumber("G0 Z", safeZ * scale, format)

 -- post.Text(" (retract Z for start of job)\n")

 post.Text(LdcGrblPauseStmt, " (******* MACHINE PAUSE ********)\n")

 post.Text("; **** OPERATOR:\n")

--rotary.ON optional

 if LdcIsRotaryJob then

 post.Text("; **** Check that Maximum Radius of rotary object is: ",

 post.FormatNumber(LdcMaxRotRad * scale, format), "\n")

 end

--rotary.OFF

 post.Text("; **** About to move XYZA to safeZ and first pierce position\n")

 post.Text("; ** Press Cycle Start or Resume button when ready to resume job\n")

 if var.LdcTorchProbeTravel ~= nil then

 LdcTorchProbeTravel = var.LdcTorchProbeTravel -- set default from Options Vars

 end

 post.Text("; Torch Probe Travel = ",

 post.FormatNumber(LdcTorchProbeTravel * scale, format), "\n")

 if var.LdcThcPresent ~= nil then

 LdcThcPresent = var.LdcThcPresent -- set from Options Vars

 end

 post.Text("; THC Present on machine, YES(1)/NO(0): ", LdcThcPresent, "\n")

 if (var.LdcThcEnable ~= nil) then

 LdcThcEnable = var.LdcThcEnable -- set default from Options Vars

 end

 post.Text("; Dynamic THC Enable ON(1)/OFF(0) status: ", LdcThcEnable, "\n")

 if var.LdcAirSupplyTime ~= nil then

 LdcAirSupplyTime = var.LdcAirSupplyTime -- set default from Options Vars

 end

 post.Text("; Air Supply Time: ",

 post.FormatNumber(LdcAirSupplyTime, "0.0"), " minutes\n")

 if var.LdcATorchTouchoffTime ~= nil then

 LdcTorchTouchoffTime = var.LdcTorchTouchoffTime -- set default from Options Vars

 end

 post.Text("; Torch Touchoff Time: ",

 post.FormatNumber(LdcTorchTouchoffTime, "0.000"), " minutes\n")

 if var.LdcArcAsMoves ~= nil then

 LdcArcAsMoves = var.LdcArcAsMoves -- set default from Options Vars

 end

 post.Text("; Arcs As Moves = ",

 post.FormatNumber(LdcArcAsMoves * scale, format), " in gcode units\n")

 -- Path Rules "On small shape" has some side effects in that it changes the

 -- LeadIn style from Ramp to Plunge, and its confusing as to what defines a small shape.

 -- Thus, its better to implement small shape handling in this post if its ever needed.

 if (var.LdcSmallShape ~= nil) then

 LdcSmallShape = var.LdcSmallShape -- set default from Options Vars

 end

 post.Text("; LDC Small Shape Size = ",

 post.FormatNumber(LdcSmallShape * scale, format), "\n")

 if var.LdcBenchTest ~= nil then

 LdcBenchTest = var.LdcBenchTest

 if LdcBenchTest > 0 then

 post.Text("; *** BENCH/DESKTOP TESTING MODE ONLY, NO CNC MACHINE NEEDED ***\n")

 post.Text("; *** TORCH TOUCHOFF AND Z ZERO NOT ACCURATE, PROBE SWITCH NOT REQUIRED ***\n")

 end

 end

 post.Eol()

 -- end of gcode file comment header block

 -- end LDC

end

function OnFinish()

 post.Text ("S0 \n")

 post.Text (LdcThcOFFcmd, "\n")

 post.Text ("G92.1 \n")

 post.Text ("; LdcSmallShape Count = ", post.FormatNumber(LdcSmallShapeCount, "0"), "\n")

 post.Text ("M5 M9 M30 \n")

 post.Eol()

end

function OnRapid()

--rotary.on

-- I’m calling this whole function as rotary specific for reasons noted:

-- this stmt suppresses an extra safeZ motion at the beginning of the job, I don’t like it because this scpost

-- has already parked Z at the G28 Z0 position is max retraction for clearance on my table.

 if LdcIsRotaryPlugin and LdcFirstSafeZ then LdcFirstSafeZ = false return end

-- be sure to use ModalNumber() for posting all axes, this prevents most cases of otherwise repeated axis posts when there

-- is no motion for that axis. Also, be sure to use the same number formatting in all cases of the axis word in other functions

-- else you may get repeat axis words and values.

 post.Text ("G0")

 post.ModalNumber (" X", endX * scale, format)

 post.ModalNumber (" Y", endY * scale, format)

 if LdcIsRotaryJob and LdcDidPenUp then

 -- in cases of rotary rectangles, endZ depends on the angle of tube due to its corners.

 -- In cases of motion to safeZ, SC makes it relative from endZ.

 -- Although normally this is sufficient, it can be a close clearance; then adding the

 -- potential for THC induced Z error, this SC caluclated safeZ/endZ dimension

 -- may not clear the diagonal (corner) of subseqent rotational motion due to accumulated THC Z error.

 -- Thus a flag was set upon exit from OnPenUP() to know when a safeZ should be posted.

 -- Since Z0 is the vertical apex of corners, an absolute safeZ is alsways going to clear them.

 LdcDidPenUp = false

 post.ModalNumber (" Z", safeZ * scale, format)

 else

-- here is an example of posting Z position adjusted by the maximum rotary radius for the object,

-- thus normalizing the value such that Z0 is the surface of the object.

 post.ModalNumber (" Z", (endZ - LdcMaxRotRad) * scale, format)

 end

-- this test prevents the A0 axis words from posting when cutting “flatsheet”.

 if LdcIsRotaryJob then

 post.ModalNumber (rotaryAxis, endA, "0.000")

 end

 post.Eol()

end

--rotary.off

function OnMove()

--rotary.on

-- a temp var because I use the result more than once.

 local relZ = endZ - LdcMaxRotRad

-- Again, make sure ModalNumber() stmts are consistent with text constant and format as in other functions,

-- else they don’t work as intended.

 post.Text ("G1")

 post.ModalNumber(" X", endX * scale, format)

 post.ModalNumber(" Y", endY * scale, format)

 post.ModalNumber(" Z", relZ * scale, format)

 if LdcIsRotaryJob then

 post.ModalNumber(rotaryAxis, endA, "0.000")

 end

 post.ModalNumber(" F", feedRate * scale, FRformat)

 post.Eol()

-- optional to have a function which handles your THC control if necessary.

 LdcTHCctrl(relZ)

End

--rotary.off

function OnArc()

 if LdcArcAsMoves > 0 then post.ArcAsMoves(LdcArcAsMoves) return end

--rotary.on

-- similar to OnMove() rotary adjustments.

 local relZ = endZ - LdcMaxRotRad

 if(arcAngle <0) then

 post.Text ("G3")

 else post.Text ("G2") end

 post.ModalNumber (" X", endX * scale, format)

 post.ModalNumber (" Y", endY * scale, format)

 post.ModalNumber (" Z", relZ * scale, format)

 post.ModalNumber (" I", (arcCentreX - currentX) * scale, format)

 post.ModalNumber (" J", (arcCentreY - currentY) * scale, format)

 if LdcIsRotaryJob then

 post.ModalNumber (rotaryAxis, endA, "0.000")

 end

 post.ModalNumber(" F", feedRate * scale, FRformat)

 post.Eol()

 LdcTHCctrl(relZ)

End

--rotary.off

--rotary.on

-- this is optional, but notice I use it to detect when Z is at rotary cutHeight since my THC is not

-- integrated into the grbl firmware like some controllers. Rather, when I dynamically command my THC ON,

-- then grbl cannot move Z until I dynamically command the THC OFF. So to keep grbl relatively in sync with

-- its expected position of Z, don’t turn THC ON until grbl is done moving Z.

function LdcTHCctrl(cz)

 -- Special THC enable/disable control logic...

 -- designed to be called after posting endX, endY, etc. coords, thus endX etc is the new "current" pos.

 -- The currentN(axis) vars do not reflect the wrapped rotary coordinates at this point.

 -- change this code to suit your controller and machine as need be.

 if LdcThcPresent > 0 and LdcThcEnable > 0 then

 -- if THC is OFF and Z is at cutHeight, good time to turn on the THC...

 if not LdcThcOn and math.abs(cz - LdcAbsCutHeight) < 0.001 then

 LdcThcOn = true

 post.Text (LdcThcONcmd, "\n")

 -- this is good place to test for and handle a small shape...

 --[[

 if entityLength <= LdcSmallShape then

 LdcSmallShapeCount = LdcSmallShapeCount + 1

 -- do something in gcode

 end

]]

 end

 end

end

--rotary.off

function OnPenDown()

--rotary.on

 -- assumes entry with Z at pierceHeight adjusted for rotary position and vertical radius.

 -- vertical radius varies by rotary angle for rectange objects

 local relZ, myX, myY

 if LdcIsRotaryPlugin then

 relZ = rotaryVals.cz - LdcMaxRotRad

 myX = rotaryVals.cx

 myY = rotaryVals.cy

 else

 relZ = currentZ

 myX = currentX

 myY = currentY

 end

--rotary.off

 local probeBuffer = 5

 if LdcBenchTest > 0 then -- if true then expected to be so for duration of job

 probeBuffer = 0.1

 LdcProbeCmd = "G38.3 Z" -- torch probe cmd, no error reported if no limit switch

 LdcTorchProbeTravel = 0

 end

 -- conditionally insert a machine Pause, requiring operator intervention to Resume,

 -- to allow an under capacity air compressor time to build up its storage tank

 -- including the cut we're about to make

 LdcCuttingTime = LdcCuttingTime + (entityLength / LdcOpFeedrate) + LdcTorchTouchoffTime -- in minutes

 if LdcCuttingTime > LdcAirSupplyTime or partIndex > LdcLastPartIndex then

 LdcCuttingTime = (entityLength / LdcOpFeedrate)

 LdcLastPartIndex = partIndex

 post.Text("G0 Z", post.FormatNumber(safeZ * scale, format), "\n")

 post.Text(LdcGrblPauseStmt,

 " (******* MACHINE PAUSE ********)\n")

 post.Text("; **** OPERATOR ** Press Cycle Start or Resume button when ready to resume job)\n")

 post.Text("G0 Z", post.FormatNumber(relZ * scale, format), "\n")

 end

 post.Text("; LDC begin per-cut torch touchoff to set adjust Z0\n")

 post.Text("G91 (enter relative distance motion mode)\n")

 post.NonModalNumber(LdcProbeCmd, -(pierceHeight + LdcTorchProbeTravel + probeBuffer) * scale, format)

 post.ModalNumber(" F", 1000 * scale, "0.##")

 post.Text(" (probe fast to find sw)\n")

 post.NonModalNumber("G0 Z", probeBuffer * scale, format)

 post.Text(" (retract off probe switch)\n")

 post.Text("G04 P0.400 (wait for sw debounce)\n")

 post.NonModalNumber(LdcProbeCmd, -probeBuffer * scale, format)

 post.ModalNumber(" F", 50 * scale, FRformat) -- use ModalNumber(" F"... here so feedrate is corrected later

 post.Text(" (probe slow for accuracy)\n")

 post.Text("G90 (return to absolute distance motion mode)\n")

 if LdcBenchTest > 0 then post.Text("; ") end -- comment out the setting of G92 Z offset

--rotary.ON

 -- set G92 Z offset. Base calc from Z at pierceHeight which was the position upon entry to

 -- this function. This adjusts Z only by the probe amount, keeping Z0 near or on the

 -- max diameter OD if using rotary.

 post.NonModalNumber("G92 Z", (relZ - pierceHeight - LdcTorchProbeTravel) * scale, format)

 post.Text(" (adjust Z0 relative to current Z0 -probe delta)\n")

 -- Due to the previous Z probe events, a side effect

 -- of grbl reading the probe control point position is that the precision of all

 -- axes is lost to no better than the precision of a single axis Step.

 -- MillRight MegaV XY steppers are config'd at 57.288steps/mm or 0.0175mm/step, thus up to

 -- 0.009mm on average has been lost by reading the probe coordinates which are in full step values.

 -- Exact to 3 decimal precision is good in general, but it is necessary to avoid grbl error33

 -- when executing a subsequent G2/G3 XYIJ center arc format stmt.

 post.NonModalNumber ("G0 Z", relZ * scale, format)

 post.NonModalNumber (" X", myX * scale, format)

 post.NonModalNumber (" Y", myY * scale, format)

 if LdcIsRotaryJob then

 post.NonModalNumber (rotaryAxis, endA, "0.000")

 end

 post.Eol()

 -- calculate the cut height as an absolute coord adjusted to include rectangle rotary object

 LdcAbsCutHeight = relZ - pierceHeight + cutHeight

 -- grbl M4 vs. M3 is used in conjunction with grbl config $32=1 (laser mode) such that

 -- the Spindle PWM (SPWM) signal varies in duty cycle proportional to the realtime

 -- control point feedrate as grbl manages acceleration and deceleration

 -- motion through corners, arcs, and start/stop condition motion.

 -- The LDC Z THC Anti-Dive circuit uses M7 and SPWM duty cycle < 86% in order to block THC Z

 -- motion control during those conditions.

 if LdcThcPresent > 0 then

 post.Text("M4 S1000 (setup for speed variable SPWM signal, fire the torch)\n")

 else

 -- if using grbl on a 8 bit Arduino Uno board and grbl 1.1e+ version, then

 -- pin D11 is the torch trigger signal and it requires S1000 to go high, aka fire the torch.

 post.Text("M3 S1000 (setup for constant SPWM ON, fire the torch)\n")

 end

--rotary.OFF

 -- adjust pierce delay to minimize the size of the pierce hole during plunge vs. Ramp piercing style.

 -- Plunge piercing occurs often when cutting open shapes. In these cases, the total pierce delay

 -- includes the dwell time (no motion time) + the time it takes to lower the torch from pierce height to

 -- cut height since the torch remains over the pierce hole.

 if (leadinType == 0) then -- assume this is a plunge leadin

 LdcPH2CHtime = (pierceHeight-cutHeight) / (plungeRate/60) -- in seconds

 -- always use a minimum of some % of tool defined pierce delay in cases

 -- when the plunge feedrate is so slow that dross blowback into nozzle can occur.

 LdcPD = math.max((pierceDelay * 0.40), (pierceDelay - LdcPH2CHtime))

 LdcPDCmt = " (Plunge travel time: "

 else -- assume this is a Ramp leadin (45deg), use the tool defined pierce delay

 LdcPH2CHtime = (pierceHeight-cutHeight)*1.41 / (plungeRate/60) -- in seconds

 LdcPD = pierceDelay

 LdcPDCmt = " (Ramp travel time: "

 end

 post.NonModalNumber("G04 P", LdcPD, "0.0#")

 post.NonModalNumber(LdcPDCmt, LdcPH2CHtime, "0.0#")

 post.NonModalNumber(", Total PD:", LdcPD + LdcPH2CHtime, "0.0#")

 post.Text(")\n")

end

function OnPenUp() -- LDC custom

 post.Text ("M5 (torch off) \n")

 if (endDelay > 0) then

 post.NonModalNumber ("G04 P", endDelay, "0.0#")

 post.Text (" (allow THC time to give Z control back to grbl) \n")

 end

--rotary.ON

 if LdcThcPresent > 0 then

 LdcThcOn = false

 post.Text (LdcThcOFFcmd, "\n")

 end

 LdcDidPenUp = true

end

--rotary.OFF

function OnDrill() -- not tested

 OnRapid()

 OnPenDown()

 endZ = drillZ

 OnMove()

 OnPenUp()

 endZ = safeZ -- LDC suspect stmt if rotary

 OnRapid()

end

function OnNewOperation() -- LDC custom

 post.Text(";** Next Operation ***\n")

 post.Text(";*** Op name: " .. operationName .. "\n")

 LdcShapeNum = 1

end

function OnNewEntity() -- LDC custom

 if (LdcShapeNum == 1) then

 post.NonModalNumber(";**** Pierce Delay: ", pierceDelay, "0.0#")

 post.NonModalNumber(", Kerf width: ", toolDia * scale, format)

 post.Eol()

 LdcOpFeedrate = feedRate

 end

 post.NonModalNumber(";===== Op index: ", operationIndex, "#")

 post.NonModalNumber(", Shape number: ", LdcShapeNum, "#")

 post.Eol()

 LdcShapeNum = LdcShapeNum + 1

end

--rotary.ON

-- required compile-time package for rotary axis support

-- must include here at end of scpost

-- comment out the following stmts if you do not have Rotary-plasma plugin Enabled in SC.

package.path = sc.Globals:Get().thisDir .. "/plugins/RotaryPlasma/?.lua"

require("rotaryhelper")

--rotary.OFF

-- EOF

